With statistical learning based systems, perfect accuracy is intrinsically hard to achieve. If you think about the success stories of machine learning, like ad targeting or fraud detection or, more recently, weather forecasting, perfect accuracy isn't the goal --- as long as the system is better than the state of the art, it is useful. Even in medical diagnosis and other healthcare applications, we tolerate a lot of error.
But when developers put AI in consumer products, people expect it to behave like software, which means that it needs to work deterministically.
Recent articles
- I really don't like ChatGPT's new memory dossier - 21st May 2025
- Building software on top of Large Language Models - 15th May 2025
- Trying out llama.cpp's new vision support - 10th May 2025